

TP 1.1.4 Calcul des sous-réseaux VLSM

Objectif

Utiliser la technique VLSM (Variable-Length Subnet Mask) pour gérer plus efficacement l'attribution des adresses IP et réduire la quantité d'informations de routage au niveau supérieur.

Prérequis/Préparation

L'adresse de classe C 192.168.10.0/24 a été attribuée.

Perth, Sydney et Singapore sont reliés par une connexion WAN à Kuala Lumpur.

- Perth a besoin d'une capacité de 60 hôtes.
- Kuala Lumpur a besoin d'une capacité de 28 hôtes.
- Sydney et Singapore ont chacun besoin d'une capacité de 12 hôtes.

Pour calculer les sous-réseaux VLSM et leurs hôtes respectifs, attribuez d'abord les besoins les plus importants à l'aide de la plage d'adresses. Les niveaux de besoin doivent être classés du plus grand au plus petit.

Dans cet exemple, Perth a besoin d'une capacité de 60 hôtes. Utilisez donc 6 bits, étant donné que $2^6 - 2 = 62$ adresses hôte utilisables. Ainsi, 2 bits seront utilisés à partir du quatrième octet pour représenter le préfixe réseau étendu /26 et les 6 bits restants seront utilisés pour les adresses hôte.

La première étape du processus de subdivision en sous-réseaux consiste à décomposer l'adresse attribuée 192.168.10.0/24 en quatre blocs d'adresse de taille égale. Puisque 4 = 2², 2 bits sont nécessaires pour identifier chacun des 4 sous-réseaux.

Ensuite, prenez le sous-réseau 0 (192.168.10.0/26) et identifiez chacun de ses hôtes.

Adresse attribuée	Sous-réseaux	62 hôtes/sous-réseau utilisables (sous- réseau 0)
192.168.10.0/24	192.168.10.0/26	192.168.10.0/26 (Adresse réseau)
	192.168.10.64/26	192.168.10.1/26
	192.168.10.128/26	192.168.10.2/26
	192.168.10.192/26	192.168.10.3/26
		jusque
		192.168.10.61/26
		192.168.10.62/26
		192.168.10.63/26 (Adresse de broadcast)

Voici la plage du masque /26.

Perth	Plage d'adresses dans le dernier octet
192.168.10.0/26	De 0 à 63, 60 hôtes sont nécessaires.
	Les adresses d'hôte 0 et 63 ne sont pas utilisables car ce sont les adresses de réseau et de broadcast de leur sous-réseau.

Étape 2

Après avoir satisfait tous les besoins du ou des niveaux supérieurs, attribuez le niveau suivant.

Kuala Lumpur a besoin d'une capacité de 28 hôtes. La prochaine adresse disponible après 192.168.10.63/26 est 192.168.10.64/26. Comme vous pouvez le voir dans le tableau ci-dessus, c'est le numéro du sous-réseau 1. Puisqu'il faut 28 hôtes, 5 bits seront nécessaires pour les adresses hôtes, 2^5 –2 = 30 adresses hôte utilisables. Ainsi, 5 bits seront nécessaires pour représenter les hôtes et 3 bits seront utilisés pour représenter le préfixe réseau étendu /27. L'application de VLSM à l'adresse 192.168.10.64/27 produit:

Sous-réseau 1	Sous-sous-réseaux	30 hôtes utilisables
		192.168.10.64/27 (Adresse réseau)
192.168.10.64/26	192.168.10.64/27	192.168.10.65/27
	192.168.10.96/27	192.168.10.66/27
		192.168.10.67/26
		jusque
		192.168.10.93/27
		192.168.10.94/27
		192.168.10.95/27 (Adresse de broadcast)

Voici la plage du masque /27.

Kuala Lumpur	Plage d'adresses dans le dernier octet
192.168.10.64/27	De 64 à 95, 28 hôtes sont nécessaires. Les hôtes 64 et 95 ne peuvent pas être utilisés parce que ce sont les adresses de réseau et de broadcast de leur sous-réseau. Trente adresses utilisables sont disponibles dans cette plage pour les hôtes.

Maintenant, Sydney et Singapore ont chacun besoin d'une capacité de 12 hôtes. La prochaine adresse disponible débute à 192.168.10.96/27. Comme vous le voyez dans le tableau 2, c'est le prochain sous-réseau disponible. Puisqu'il faut 12 hôtes, 4 bits seront nécessaires pour les adresses hôte, $2^4 = 16$, 16 - 2 = 14 adresses utilisables. Ainsi, 4 bits seront nécessaires pour représenter les hôtes et 4 bits seront utilisés pour représenter le préfixe réseau étendu /28. L'application de VLSM à l'adresse 192.168.10.96/27 produit:

Sous-réseaux	Sous-sous-réseaux	14 hôtes utilisables
192.168.10.96/27	192.168.10.96/28	192.168.10.96/28 (Adresse réseau)
	192.168.10.112/28	192.168.10.97/28
		192.168.10.98/28
		192.168.10.99/28
		jusque
		192.168.10.109/28
		192.168.10.110/28
		192.168.10.111/28 (Adresse de broadcast)

Voici la plage du masque /28.

Sydney	Plage d'adresses dans le dernier octet
192.168.10.96/28	De 96 à 111, 12 hôtes sont nécessaires.
	Les hôtes 96 et 111 ne peuvent pas être utilisés parce que ce sont les adresses de réseau et de broadcast de leur sous-réseau. Quatorze adresses utilisables sont disponibles dans cette plage pour les hôtes.

Puisque Singapore a également besoin d'une capacité de 12 hôtes, le jeu d'adresses hôte suivant peut être dérivé du prochain sous-réseau disponible (192.168.10.112/28).

Sous-sous-réseaux	14 hôtes utilisables
192.168.10.96/28	192.168.10.112/28 (Adresse réseau)
192.168.10.112/28	192.168.10.113/28
	192.168.10.114/28
	192.168.10.115/28
	jusque
	192.168.10.125/28
	192.168.10.126/28
	192.168.10.127/28 (Adresse de broadcast)

Voici la plage du masque /28.

Singapore	Plage d'adresses dans le dernier octet
192.168.10.112/28	De 112 à 127, 12 hôtes sont nécessaires.
	Les hôtes 112 et 127 ne peuvent pas être utilisés parce que ce sont les adresses de réseau et de broadcast de leur sous-réseau. Quatorze adresses utilisables sont disponibles dans cette plage pour les hôtes.

Attribuez maintenant les adresses des liaisons WAN. N'oubliez pas que chaque liaison WAN nécessitera deux adresses IP. Le prochain réseau disponible est 192.168.10.128/28. Puisque 2 adresses réseau sont nécessaires pour chaque liaison WAN, 2 bits seront nécessaires pour les adresses hôte, $2^2-2=2$ adresses utilisables. Ainsi, 2 bits seront nécessaires pour représenter les liaisons et 6 bits pour représenter le préfixe réseau étendu /30. L'application de VLSM à l'adresse 192.168.10.128/28 produit:

Sous-sous-réseaux	14 hôtes utilisables
192.168.10.128/30	192.168.10.128/30 (Adresse réseau)
	192.168.10.129/30
	192.168.10.130/30
	192.168.10.131/30 (Adresse de broadcast)
192.168.10.132/30	192.168.10.132/30 (Adresse réseau)
	192.168.10.133/30
	192.168.10.134/30
	192.168.10.135/30 (Adresse de broadcast)
192.168.10.136/30	192.168.10.136/30 (Adresse réseau)
	192.168.10.137/30
	192.168.10.138/30
	192.168.10.139/30 (Adresse de broadcast)

Les adresses des liaisons WAN peuvent être prises dans les adresses disponibles de chacun des sous-réseau /30.